Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
mBio ; 13(4): e0053822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924851

RESUMO

Enteropathogenic Escherichia coli (EPEC) and Shigella are etiologic agents of diarrhea in children <5 years old living in resource-poor countries. Repeated bouts of infection lead to lifelong morbidity and even death. The goal of this study was to characterize local mucosal immune responses in Shigella- and EPEC-infected children <5 years of age with moderate to severe diarrhea (MSD) enrolled in the Global Enteric Multicenter Study (GEMS). We hypothesized that infection with each of these pathogens would induce distinct gut mucosal immune profiles indicative of disease etiology and severity. To test this hypothesis, innate and adaptive immune markers were measured in stools from children with diarrhea due to EPEC, Shigella, or other organisms and in children who had no diarrhea. Shigella-positive diarrhea evoked robust proinflammatory and TH1/TH2 cytokine responses compared to diarrhea caused by EPEC or other organisms, with the exception of interleukin 5 (IL-5), which was associated with EPEC infection. The presence of IL-1ß, IL-4, IL-16, and tumor necrosis factor beta (TNF-ß) was associated with the absence of dysentery. EPEC-positive diarrhea evoked high levels of IL-1ß, vascular endothelial growth factor (VEGF), and IL-10. Granulocyte-macrophage colony-stimulating factor (GM-CSF) had opposing roles in disease severity, being associated with absence of diarrhea in EPEC-infected children and with dysenteric Shigella infection. High levels of antigen-specific antibodies were detected in the controls and children with Shigella without dysentery, which suggests a protective role against severe disease. In summary, this study identified distinct local immune responses associated with two clinically relevant diarrheagenic pathogens, Shigella and EPEC, in children and identified protective immune phenotypes that can inform the development of preventive measures. IMPORTANCE Shigella and enteropathogenic Escherichia coli are primary agents of moderate to severe diarrhea in children <5 years of age living in resource-poor countries. Repeated bouts of illness lead to lifelong health impairment and even death. Aiming to understand the local host immunity to these pathogens in relation to disease prognosis and to identify prophylaxis and therapeutic targets, we investigated innate and adaptive immune profiles in stools from children infected with EPEC with and without diarrhea, Shigella with and without dysentery, and controls in well characterized clinical samples obtained during the Global Enteric Multicenter Study. For the first time, we report pathogen-specific mucosal immune profiles associated with severity or absence of disease in children <5 years of age that can inform prevention and treatment efforts.


Assuntos
Disenteria , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Shigella , Diarreia , Disenteria/complicações , Infecções por Escherichia coli/complicações , Humanos , Índice de Gravidade de Doença , Shigella/genética , Fator A de Crescimento do Endotélio Vascular
2.
Metabolites ; 11(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34940599

RESUMO

Colonic epithelium-commensal interactions play a very important role in human health and disease development. Colonic mucus serves as an ecologic niche for a myriad of commensals and provides a physical barrier between the epithelium and luminal content, suggesting that communication between the host and microbes occurs mainly by soluble factors. However, the composition of epithelia-derived metabolites and how the commensal flora influences them is less characterized. Here, we used mucus-producing human adult stem cell-derived colonoid monolayers exposed apically to probiotic E. coli strain Nissle 1917 to characterize the host-microbial communication via small molecules. We measured the metabolites in the media from host and bacterial monocultures and from bacteria-colonoid co-cultures. We found that colonoids secrete amino acids, organic acids, nucleosides, and polyamines, apically and basolaterally. The metabolites from host-bacteria co-cultures markedly differ from those of host cells grown alone or bacteria grown alone. Nissle 1917 affects the composition of apical and basolateral metabolites. Importantly, spermine, secreted apically by colonoids, shows antibacterial properties, and inhibits the growth of several bacterial strains. Our data demonstrate the existence of a cross-talk between luminal bacteria and human intestinal epithelium via metabolites, which might affect the numbers of physiologic processes including the composition of commensal flora via bactericidal effects.

3.
Methods Mol Biol ; 2291: 285-296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704759

RESUMO

Human intestinal organoid cultures established from crypt-derived stem cells truly revolutionized our approach to study intestinal epithelial physiology and pathologies as they can be propagated indefinitely and preserve the genetic signature of the donor and the gut segment specificity in culture. Here we describe human stem cell-derived colonoid monolayers as a reliable and reproducible model to study Shiga toxin-producing Escherichia coli (STEC) infection and STEC-caused pathologies of the whole colonic epithelium comprising a mixture of colonocytes, goblet, enteroendocrine, and other rare cells present in human colonic epithelial tissue.


Assuntos
Colo , Células Epiteliais , Infecções por Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Mucosa Intestinal , Modelos Biológicos , Escherichia coli Shiga Toxigênica/fisiologia , Colo/metabolismo , Colo/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia
4.
Gut Microbes ; 12(1): 1752125, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32378997

RESUMO

Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) has a continuing impact on residents and travelers in underdeveloped countries. Both heat-labile (LT) and heat-stable (ST) enterotoxins contribute to pathophysiology via induction of cyclic nucleotide synthesis, and previous investigations focused on intracellular signal transduction rather than possible intercellular second messenger signaling. We modeled ETEC infection in human jejunal enteroid/organoid monolayers (HEM) and evaluated cyclic nucleotide pools, finding that intracellular cAMP was significantly increased but also underwent apical export, whereas cGMP was minimally retained intracellularly and predominantly effluxed into the basolateral space. LT and virulence factors including EatA, EtpA, and CfaE promoted ST release and enhanced ST-stimulated cGMP production. Intracellular cGMP was regulated by MK-571-sensitive export in addition to degradation by phosphodiesterase 5. HEMs had limited ST-induced intracellular cGMP accumulation compared to T84 or Caco-2 models. Cyclic nucleotide export/degradation demonstrates additional complexity in the mechanism of ETEC infection and may redirect understanding of diarrheal onset.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Infecções por Escherichia coli/patologia , Jejuno/patologia , Toxinas Bacterianas/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Diarreia/microbiologia , Diarreia/patologia , Enterotoxinas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Humanos , Jejuno/microbiologia , Glicoproteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Fatores de Virulência/metabolismo
5.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31818966

RESUMO

Modeling host-pathogen interactions with human intestinal epithelia using enteroid monolayers on permeable supports (such as Transwells) represents an alternative to animal studies or use of colon cancer-derived cell lines. However, the static monolayer model does not expose epithelial cells to mechanical forces normally present in the intestine, including luminal flow and serosal blood flow (shear force) or peristaltic forces. To determine the contribution of mechanical forces in the functional response of human small intestine to a virulence factor of a pathogenic intestinal bacterium, human jejunal enteroids were cultured as monolayers in microengineered fluidic-based Organ-Chips (Intestine-Chips) exposed to enterotoxigenic Escherichia coli heat-stable enterotoxin A (ST) and evaluated under conditions of static fluid, apical and basolateral flow, and flow plus repetitive stretch. Application of flow increased epithelial cell height and apical and basolateral secretion of cyclic GMP (cGMP) under baseline, unstimulated conditions. Addition of ST under flow conditions increased apical and basolateral secretion of cGMP relative to the level under static conditions but did not enhance intracellular cGMP accumulation. Cyclic stretch did not have any significant effect beyond that contributed by flow. This study demonstrates that fluid flow application initiates changes in intestinal epithelial cell characteristics relative to those of static culture conditions under both baseline conditions and with exposure to ST enterotoxin and suggests that further investigations of the application of these mechanical forces will provide insights into physiology and pathophysiology that more closely resemble intact intestine than study under static conditions.


Assuntos
GMP Cíclico/fisiologia , Escherichia coli Enterotoxigênica/fisiologia , Enterotoxinas/fisiologia , Infecções por Escherichia coli/fisiopatologia , Proteínas de Escherichia coli/fisiologia , Intestino Delgado/fisiologia , Transdução de Sinais/fisiologia , Estresse Mecânico , Toxinas Bacterianas , Humanos , Jejuno/citologia , Fatores de Virulência/fisiologia
6.
Toxins (Basel) ; 10(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200426

RESUMO

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


Assuntos
Toxinas Bacterianas/toxicidade , Colo/efeitos dos fármacos , Proteínas de Escherichia coli/toxicidade , Transporte de Íons/efeitos dos fármacos , Organoides/efeitos dos fármacos , Serina Endopeptidases/toxicidade , Colo/fisiologia , Escherichia coli Êntero-Hemorrágica , Humanos , Organoides/fisiologia
7.
Cell Mol Gastroenterol Hepatol ; 6(2): 163-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003123

RESUMO

BACKGROUND & AIMS: The diarrheagenic pathogen, enteropathogenic Escherichia coli (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss. METHODS: DSG2 abundance and localization was monitored via immunoblotting and immunofluorescence, respectively. Junctional perturbations were visualized by electron microscopy, and cell-cell adhesion was assessed using dispase assays. EspH alanine-scan mutants as well as pharmacologic agents were used to evaluate impacts on desmosomal alterations. EPEC-mediated DSG2 loss, and its impact on bacterial colonization in vivo, was assessed using a murine model. RESULTS: The secreted virulence protein EspH mediates EPEC-induced DSG2 degradation, and contributes to desmosomal perturbation, loss of cell junction integrity, and barrier disruption in infected IECs. EspH sequesters Rho guanine nucleotide exchange factors and inhibits Rho guanosine triphosphatase signaling; EspH mutants impaired for Rho guanine nucleotide exchange factor interaction failed to inhibit RhoA or deplete DSG2. Cytotoxic necrotizing factor 1, which locks Rho guanosine triphosphatase in the active state, jasplakinolide, a molecule that promotes actin polymerization, and the lysosomal inhibitor bafilomycin A, respectively, rescued infected cells from EPEC-induced DSG2 loss. Wild-type EPEC, but not an espH-deficient strain, colonizes mouse intestines robustly, widens paracellular junctions, and induces DSG2 re-localization in vivo. CONCLUSIONS: Our studies define the mechanism and consequences of EPEC-induced desmosomal alterations in IECs. These perturbations contribute to the colonization and virulence of EPEC, and likely related pathogens.

8.
mBio ; 9(1)2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487233

RESUMO

Enteric pathogens with low infectious doses rely on the ability to orchestrate the expression of virulence and metabolism-associated genes in response to environmental cues for successful infection. Accordingly, the human pathogen enterohemorrhagic Escherichia coli (EHEC) employs a complex multifaceted regulatory network to link the expression of type III secretion system (T3SS) components to nutrient availability. While phosphorylation of histidine and aspartate residues on two-component system response regulators is recognized as an integral part of bacterial signaling, the involvement of phosphotyrosine-mediated control is minimally explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of E. coli identified 342 phosphorylated proteins, indicating that phosphotyrosine modifications in bacteria are more prevalent than previously anticipated. The present study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/GalR family regulator, Cra, negatively affects T3SS expression under glycolytic conditions that are typical for the colonic lumen environment where production of the T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expression by modulating the expression of ler, which encodes the major activator of EHEC virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA binding to fine-tune the expression of virulence-associated genes, including those of the locus of enterocyte effacement pathogenicity island that encode the T3SS, and thereby negatively affects the formation of attaching and effacing lesions. Our data indicate that tyrosine phosphorylation provides an additional mechanism to control the DNA binding of Cra and other LacI/GalR family regulators, including LacI and PurR. This study describes an initial effort to unravel the role of global phosphotyrosine signaling in the control of EHEC virulence potential.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) causes outbreaks of hemorrhagic colitis and the potentially fatal hemolytic-uremic syndrome. Successful host colonization by EHEC relies on the ability to coordinate the expression of virulence factors in response to environmental cues. A complex network that integrates environmental signals at multiple regulatory levels tightly controls virulence gene expression. We demonstrate that EHEC utilizes a previously uncharacterized phosphotyrosine signaling pathway through Cra to fine-tune the expression of virulence-associated genes to effectively control T3SS production. This study demonstrates that tyrosine phosphorylation negatively affects the DNA-binding capacity of Cra, which affects the expression of genes related to virulence and metabolism. We demonstrate for the first time that phosphotyrosine-mediated control affects global transcription in EHEC. Our data provide insight into a hitherto unexplored regulatory level of the global network controlling EHEC virulence gene expression.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Fosforilação , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/metabolismo
9.
Mol Microbiol ; 108(5): 536-550, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509331

RESUMO

Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Organofosfatos/metabolismo , Polímeros/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Escherichia coli Enteropatogênica/genética , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Feminino , Células HeLa , Humanos , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Tirosina/genética , Virulência/genética , Fatores de Virulência/genética
10.
Gut Microbes ; : 0, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29087765

RESUMO

There is a paucity of information on diarrheagenic enterotoxigenic Escherichia coli (ETEC)'s interaction with innate immune cells, in part due to the lack of reliable models that recapitulate infection in human gut. In a recent publication, we described the development of an ex vivo enteroid-macrophage co-culture model using human primary cells. We reported that macrophages residing underneath the epithelial monolayer acquired "resident macrophage" phenotype characterized by lower production of inflammatory cytokines and strong phagocytic activity. These macrophages extended projections across the epithelium, which captured ETEC applied to the apical side of the epithelium and reduced luminal bacterial load. Additional evidence presented in this addendum confirms these findings and further demonstrates that macrophage adaptation occurs regardless of the stage of differentiation of epithelial cells, and that ETEC uptake arises rapidly after infection. The enteroid-macrophage co-culture represents a novel and relevant tool to study host-cell interactions and pathogenesis of enteric infections in humans.

11.
Expert Rev Vaccines ; 16(3): 197-213, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28165831

RESUMO

INTRODUCTION: Cholera remains a problem in developing countries and a risk for travelers. Hypochlorhydria, blood group O, cardiac and renal disease increase the risk of developing cholera gravis. Oral vaccines containing inactivated Vibrio cholerae and requiring two doses are available in some countries. No cholera vaccine had been available for U.S. travelers for decades until 2016 when CVD 103-HgR (VAXCHORA™), an oral live attenuated vaccine, was licensed by the U.S. FDA. Areas covered: Enduring protection following wild-type cholera provided the rationale to develop a single-dose live oral vaccine. CVD 103-HgR is well-tolerated and protects against cholera caused by V. cholerae O1 of either serotype (Inaba, Ogawa) and biotype (El Tor, Classical). Since 90% vaccine efficacy is evident 10 days post-ingestion of a single dose, CVD 103-HgR can rapidly protect travelers. Vibriocidal antibody seroconversion correlates with protection; >90% of U.S. adult (including elderly) vaccinees seroconvert. The U.S. Public Health Service's Advisory Committee on Immunization Practices recommends CVD 103-HgR for U.S. travelers to areas of ongoing cholera transmission. Expert commentary: Next steps include evaluations in children, post-licensure safety and effectiveness monitoring, diminishing cold chain constraints, optimizing a 'high-dose' formulation for developing countries, and diminishing/eliminating the need for water to administer a dose.


Assuntos
Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/imunologia , Cólera/prevenção & controle , Vibrio cholerae/imunologia , Administração Oral , Anticorpos Antibacterianos/sangue , Cólera/imunologia , Cólera/transmissão , Humanos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
13.
Nat Microbiol ; 1: 15014, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27571975

RESUMO

Enteropathogenic Escherichia coli (EPEC) are diarrhoeagenic E. coli, and are a significant cause of gastrointestinal illness among young children in developing countries. Typical EPEC are identified by the presence of the bundle-forming pilus encoded by a virulence plasmid, which has been linked to an increased severity of illness, while atypical EPEC lack this feature. Comparative genomics of 70 total EPEC from lethal (LI), non-lethal symptomatic (NSI) or asymptomatic (AI) cases of diarrhoeal illness in children enrolled in the Global Enteric Multicenter Study was used to investigate the genomic differences in EPEC isolates obtained from individuals with various clinical outcomes. A comparison of the genomes of isolates from different clinical outcomes identified genes that were significantly more prevalent in EPEC isolates of symptomatic and lethal outcomes than in EPEC isolates of asymptomatic outcomes. These EPEC isolates exhibited previously unappreciated phylogenomic diversity and combinations of virulence factors. These comparative results highlight the diversity of the pathogen, as well as the complexity of the EPEC virulence factor repertoire.


Assuntos
Diarreia/microbiologia , Diarreia/patologia , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Variação Genética , Escherichia coli Enteropatogênica/isolamento & purificação , Genes Bacterianos , Genômica , Humanos , Filogenia , Fatores de Virulência/genética
14.
Cell Mol Gastroenterol Hepatol ; 2(1): 48-62.e3, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26855967

RESUMO

BACKGROUND AND AIMS: Enterohemorrhagic E. coli (EHEC) causes over 70,000 episodes of foodborne diarrhea annually in the USA. The early sequence of events which precede life-threatening hemorrhagic colitis and hemolytic uremic syndrome are not fully understood due to the initial asymptomatic phase of the disease and the lack of a suitable animal model. The aim of this study was to determine the initial molecular events in the interaction between EHEC and human colonic epithelium. METHODS: Human colonoids derived from adult proximal colonic stem cells were developed into monolayers to study EHEC-epithelial interactions. Monolayer confluency and differentiation were monitored by transepithelial electrical resistance (TER) measurements. The monolayers were apically infected with EHEC and the progression of epithelial damage over time was assessed using biochemical and imaging approaches. RESULTS: Human colonoid cultures recapitulate the differential protein expression patterns characteristic of the crypt and surface colonocytes. Mucus-producing differentiated colonoid monolayers are preferentially colonized by EHEC. Upon colonization, EHEC forms characteristic attaching and effacing lesions on the apical surface of colonoid monolayers. Mucin 2, a main component of colonic mucus, and protocadherin 24 (PCDH24), a microvillar resident protein, are targeted by EHEC at early stages of infection. The EHEC secreted serine protease, EspP, initiates brush border damage through PCDH24 reduction. CONCLUSIONS: Human colonoid monolayers are a relevant pathophysiological model which allows the study of early molecular events during enteric infections. Colonoid monolayers provide access to both apical and basolateral surfaces, thus providing an advantage over 3D cultures to study host-pathogen interactions in a controllable and tractable manner. EHEC reduces colonic mucus and affects the brush border cytoskeleton in the absence of commensal bacteria.

15.
Infect Immun ; 83(10): 4103-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238712

RESUMO

Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Plasmídeos/genética , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Variação Genética , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo , Virulência
16.
Front Microbiol ; 6: 569, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124752

RESUMO

Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis.

17.
J Infect Dis ; 210(12): 1909-19, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038258

RESUMO

BACKGROUND: A Shiga toxin type 2a (Stx2a)-producing enteroaggregative Escherichia coli (EAEC) strain of serotype O104:H4 caused a large outbreak in 2011 in northern Europe. Pathogenic mechanisms for this strain are unclear. We hypothesized that EAEC genes encoded on the pAA virulence plasmid promoted the translocation of Stx2a across the intestinal mucosa. METHODS: We investigated the potential contribution of pAA by using mutants of Stx-EAEC strain C227-11, either cured of the pAA plasmid or deleted for individual known pAA-encoded virulence genes (ie, aggR, aggA, and sepA). The resulting mutants were tested for their ability to induce interleukin 8 (IL-8) secretion and translocation of Stx2a across a polarized colonic epithelial (T84 cell) monolayer. RESULTS: We found that deletion of aggR or aggA significantly reduced bacterial adherence and (independently) translocation of Stx2a across the T84-cell monolayer. Moreover, deletion of aggR, aggA, sepA, or the Stx2a-encoding phage from C227-11 resulted in reduced secretion of IL-8 from the infected monolayer. CONCLUSIONS: Our data suggest that the AggR-regulated aggregative adherence fimbriae I enhance inflammation and enable the outbreak strain to both adhere to epithelial cells and translocate Stx2a across the intestinal epithelium.


Assuntos
Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Transporte Proteico , Toxina Shiga II/metabolismo , Aderência Bacteriana , Linhagem Celular , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Genótipo , Alemanha , Humanos , Interleucina-8/metabolismo , Plasmídeos , Sorogrupo , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
PLoS One ; 9(1): e86618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466172

RESUMO

BACKGROUND: Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. RESULTS: We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. CONCLUSIONS: H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.


Assuntos
Enterócitos/microbiologia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células Epiteliais/microbiologia , Células HeLa , Humanos , Mucosa Intestinal/microbiologia , Mutação/genética
19.
Microbiol Spectr ; 2(6)2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25590020

RESUMO

In this overview, we describe the history of Shiga toxin (Stx)-producing Escherichia coli (STEC) in two phases. In phase one, between 1977 and 2011, we learned that E. coli could produce Shiga toxin and cause both hemorrhagic colitis and the hemolytic-uremic syndrome in humans and that the prototype STEC-E. coli O157:H7-adheres to and effaces intestinal epithelial cells by a mechanism similar to that of enteropathogenic E. coli. We also recognized that the genes for Stx are typically encoded on a lysogenic phage; that STEC O157:H7 harbors a large pathogenicity island that encodes the elements needed for the characteristic attaching and effacing lesion; and that the most severe cases of human disease are linked to production of Stx type 2a, not Stx type 1a. Phase two began with a large food-borne outbreak of hemorrhagic colitis and hemolytic-uremic syndrome in Germany in 2011. That outbreak was caused by a novel strain consisting of enteroaggregative E. coli O104:H4 transduced by a Stx2a-converting phage. From this outbreak we learned that any E. coli strain that can adhere tightly to the human bowel (either by a biofilm-like mechanism as in E. coli O104:H4 or by an attaching and effacing mechanism as in E. coli O157:H7) can cause severe diarrheal and systemic illness when it acquires the capacity to produce Stx2a. This overview provides the basis for the review of current information regarding these fascinating and complex pathogens.


Assuntos
Diarreia/história , Infecções por Escherichia coli/história , Doenças Transmitidas por Alimentos/história , Síndrome Hemolítico-Urêmica/história , Escherichia coli Shiga Toxigênica/isolamento & purificação , Diarreia/complicações , Diarreia/epidemiologia , Diarreia/microbiologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Doenças Transmitidas por Alimentos/complicações , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Saúde Global , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , História do Século XX , História do Século XXI , Humanos , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade
20.
PLoS One ; 8(7): e69196, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874912

RESUMO

Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.


Assuntos
Escherichia coli Êntero-Hemorrágica/enzimologia , Proteínas de Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Pinocitose/fisiologia , Serina Endopeptidases/metabolismo , Toxina Shiga/metabolismo , Actinas/metabolismo , Animais , Sistemas de Secreção Bacterianos/fisiologia , Linhagem Celular , Imunofluorescência , Humanos , Íleo/citologia , Íleo/metabolismo , Íleo/ultraestrutura , Mucosa Intestinal/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...